Enhancement of the Charge Carrier of the Light Emitting Electrochemical Cell by Modification ITO Surface with Organic Semiconductor Nanomaterial

Authors

  • Ali Kemal Havare Toros University, Electrical-Electronics Engineering Department, Photoelectronics Lab. (PEL), 33140, Mersin, Turkey

Keywords:

Charge carrier, LEC, self-assembled, OLED, super yellow (PDY-132)

Abstract

The charge mobility of the light emitting electrochemical cell (LEC) device is studied by the Space Charge Limited Current (SCLC) technique. The LEC type diode is constituted as hole only device in order to understand how affect interface modification with the 4-[(2E)-3-carboxyprop-2-enamido] benzoic acid (CABA) on the charge mobility of the device by carried out I-V measurements.

References

. Wong KW, Yip H, Luo Y, Wong K, Lau W, Low K, Chow H, Gao Z, Yeung W, Chang C. Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly (styrene sulphonate) with a self-assembly monolayer. Applied Physics Letters. 2002;80(15):2788-2790.

. Namanga JE, Pei H, Bousrez G, Mallick B, Smetana V, Gerlitzki N, Mudring AV. Efficient and Long Lived Green Light‐Emitting Electrochemical Cells. Advanced Functional Materials. 2020;30(33):1909809.

. Han T-H, Kim Y-H, Kim MH, Song W, Lee T-W. Synergetic influences of mixed-host emitting layer structures and hole injection layers on efficiency and lifetime of simplified phosphorescent organic light-emitting diodes. ACS applied materials & interfaces. 2016;8(9):6152-6163.

. Di Marcantonio M, Vollkommer F, Bacher G, Nannen E. A light-emitting electrochemical cell (LEC) containing a hole-blocking layer of TmPyPB. Journal of Materials Chemistry C. 2018;6(36):9742-9748.

. Rothe C, Chiang CJ, Jankus V, Abdullah K, Zeng X, Jitchati R, Batsanov AS, Bryce MR, Monkman AP. Ionic iridium (III) complexes with bulky side groups for use in light emitting cells: Reduction of concentration quenching. Advanced Functional Materials. 2009;19(13):2038-2044.

. Meng Y, Ahmadi M, Wu X, Xu T, Xu L, Xiong Z, Chen P. High performance and stable all-inorganic perovskite light emitting diodes by reducing luminescence quenching at PEDOT: PSS/Perovskites interface. Organic Electronics. 2019;64:47-53.

. De Jong M, Van Ijzendoorn L, De Voigt M. Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes. Applied Physics Letters. 2000;77(14):2255-2257.

. Huang YF, Inigo AR, Chang CC, Li KC, Liang CF, Chang CW, Lim TS, Chen SH, White JD, Jeng US. Nanostructure‐dependent vertical charge transport in MEH‐PPV films. Advanced Functional Materials. 2007;17(15):2902-2910.

. Huang YF, Chang CW, Smilgies DM, Jeng US, Inigo AR, White JD, Li KC, Lim TS, Li TD, Chen HY. Correlating Nanomorphology with Charge‐Transport Anisotropy in Conjugated‐Polymer Thin Films. Advanced materials. 2009;21(29):2988-2992.

. Yadav RAK, Dubey DK, Chen S-Z, Liang T-W, Jou J-H. Role of molecular orbital energy levels in OLED performance. Scientific reports. 2020;10(1):1-15.

. Sanderson S, Philippa B, Vamvounis G, Burn PL, White RD. Elucidating the effects of guest-host energy level alignment on charge transport in phosphorescent OLEDs. Applied Physics Letters. 2019;115(26):263301.

. Mahoro GU, Fernandez‐Cestau J, Renaud JL, Coto PB, Costa RD, Gaillard S. Recent Advances in Solid‐State Lighting Devices Using Transition Metal Complexes Exhibiting Thermally Activated Delayed Fluorescent Emission Mechanism. Advanced Optical Materials. 2020;8(16):2000260.

. Verboven I, Deferme W. Printing of flexible light emitting devices: A review on different technologies and devices, printing technologies and state-of-the-art applications and future prospects. Progress in Materials Science. 2021;118:100760.

. Meerheim R, Scholz S, Olthof S, Schwartz G, Reineke S, Walzer K, Leo K. Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices. Journal of Applied Physics. 2008;104(1):014510.

. Mitschke U, Bäuerle P. The electroluminescence of organic materials. Journal of Materials Chemistry. 2000;10(7):1471-1507.

. Wu Q-H. Progress in modification of indium-tin oxide/organic interfaces for organic light-emitting diodes. Critical reviews in solid state and materials sciences. 2013;38(4):318-352.

. Mahdiyar R, Fadavieslam M. The effects of chemical treatment on ITO properties and performance of OLED devices. Optical and Quantum Electronics. 2020;52(5):1-12.

. Nau S, Schulte N, Winkler S, Frisch J, Vollmer A, Koch N, Sax S, List EJ. Highly Efficient Color‐Stable Deep‐Blue Multilayer PLEDs: Preventing PEDOT: PSS‐Induced Interface Degradation. Advanced materials. 2013;25(32):4420-4424.

. Roldán-Carmona C, Akatsuka T, Sessolo M, Watkins SE, Bolink HJ. Engineering charge injection interfaces in hybrid light-emitting electrochemical cells. ACS applied materials & interfaces. 2014;6(22):19520-19524.

. Shoji TD, Zhu Z, Leger JM. Characterizing ion profiles in dynamic junction light-emitting electrochemical cells. ACS applied materials & interfaces. 2013;5(22):11509-11514.

. Puscher B. Charge Carrier Diffusion and Transfer Mechanism in Hybrid Lead Halide Perovskite Materials: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); 2020.

. Van Der Holst J, Van Oost F, Coehoorn R, Bobbert P. Electron-hole recombination in disordered organic semiconductors: Validity of the Langevin formula. Physical Review B. 2009;80(23):235202.

. Scott JC, Malliaras GG, Salem JR, Brock PJ, Bozano L, Carter SA, editors. Injection, transport, and recombination in organic light-emitting diodes. Organic Light-Emitting Materials and Devices II; 1998: International Society for Optics and Photonics.

. Deng Z, Lee S, Webb D, Chan Y, Gambling W. Carrier transport in thin films of organic electroluminescent materials. Synthetic Metals. 1999;107(2):107-109.

. Spreitzer H, Becker H, Kluge E, Kreuder W, Schenk H, Demandt R, Schoo H. Soluble phenyl‐substituted PPVs—new materials for highly efficient polymer LEDs. Advanced materials. 1998;10(16):1340-1343.

. Yalcin E, Kara DA, Karakaya C, Yigit MZ, Havare AK, Can M, Tozlu C, Demic S, Kus M, Aboulouard A. Functionalized organic semiconductor molecules to enhance charge carrier injection in electroluminescent cell. Optical Materials. 2017;69:283-290.

. Havare AK, Can M, Demic S, Kus M, Icli S. The performance of OLEDs based on sorbitol doped PEDOT: PSS. Synthetic Metals. 2012;161(23-24):2734-2738.

. Gilissen K, Stryckers J, Verstappen P, Drijkoningen J, Heintges GH, Lutsen L, Manca J, Maes W, Deferme W. Ultrasonic spray coating as deposition technique for the light-emitting layer in polymer LEDs. Organic Electronics. 2015;20:31-35.

. Tanase C, Blom P, De Leeuw D. Origin of the enhanced space-charge-limited current in poly (p-phenylene vinylene). Physical Review B. 2004;70(19):193202.

. Khan M, Xueyin J, Zhilin Z, Xiaowen Z, Liang Z, Jun L. Estimation of electron mobility of n-doped 4, 7-diphenyl-1, 10-phenanthroline using space-charge-limited currents. Journal of Semiconductors. 2009;30(11):114009.

Downloads

Published

2022-03-09

How to Cite

Havare, A. K. (2022). Enhancement of the Charge Carrier of the Light Emitting Electrochemical Cell by Modification ITO Surface with Organic Semiconductor Nanomaterial. International Journal of Sciences: Basic and Applied Research (IJSBAR), 61(2), 174–181. Retrieved from https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/13866

Issue

Section

Articles