The Role of Nigella Sativa as Anti-Inflammation in Klebsiella Pneumonia Infection : A Review

Authors

  • Edward Pandu Wiriansya Department of Pulmonology, Faculty of Medicine, Indonesian Muslim University, Makassar, Indonesia
  • Syamsu Rijal bDepartment of Anatomical Pathology, Faculty of Medicine, Indonesian Muslim University, Makassar, Indonesia
  • Arina Fathiyyah Arifin Department of Histology, Faculty of Medicine, Indonesian Muslim University, Makassar, Indonesia
  • Muhammad Naufal Zuhair Faculty of Medicine, Hasanuddin University, Makassar, Indonesia

Keywords:

Nigella sativa, Anti-inflammation of Bacteria, Klebsiella Pneumonia

Abstract

The oil obtained from the seeds of Nigella sativa L. (N. sativa), also known as black cumin, is frequently used in the Mediterranean area for its anti-inflammatory. The essential oil of Nigella sativa (NSO) constituents include p-cymene, thymol, thymoquinone (TQ), dithymoquinone (DTQ) and thymohydroquinone (THQ). N. sativa and its main active constituent TQ have been attributed to numerous pharmacological activities. The present study demonstrated the anti-inflammatory effect of NSO in acute inflammation. Nigella sativa extract have an effect on very significant to degradation of colony amount of Klebsiella pneumoniae. Nigella sativa could be potential sources of antimicrobials with protective properties are attributed to reproducible radical scavenging activity as well as an interaction with numerous molecular targets involved in inflammation, including proinflammatory enzymes and cytokines. Furthermore, broad spectrum studies on specific cellular and molecular mechanisms of action as well as controlled clinical trials to prove its efficacy in humans are really needed to further assess the application of Nigella sativa.

References

Abdallah, E. M. (2017). Black Seed (Nigella sativa) as antimicrobial drug: a mini-review. Novel Approches in Drug Designing and Develop, 3(2), 1–5.

Alshwyeh, H. A., Aldosary, S. K., Ilowefah, M. A., Shahzad, R., Shehzad, A., Bilal, S., Lee, I.-J., Mater, J. A. al, Al-Shakhoari, F. N., & Alqahtani, W. A. (2022). Biological Potentials and Phytochemical Constituents of Raw and Roasted Nigella arvensis and Nigella sativa. Molecules, 27(2), 550.

Hossain, M. S., Sharfaraz, A., Dutta, A., Ahsan, A., Masud, M. A., Ahmed, I. A., Goh, B. H., Urbi, Z., Sarker, M. M. R., & Ming, L. C. (2021). A review of ethnobotany, phytochemistry, antimicrobial pharmacology and toxicology of Nigella sativa L. Biomedicine & Pharmacotherapy, 143, 112182.

Fatima Shad, K., Soubra, W., & Cordato, D. J. (2021). The role of thymoquinone, a major constituent of Nigella sativa, in the treatment of inflammatory and infectious diseases. Clinical and Experimental Pharmacology and Physiology, 48(11), 1445–1453.

Martin, R. M., & Bachman, M. A. (2018). Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology, 8, 4.

Pop, R. M., Sabin, O., Suciu, Șoimița, Vesa, S. C., Socaci, S. A., Chedea, V. S., Bocsan, I. C., & Buzoianu, A. D. (2020). Nigella sativa’s anti-inflammatory and antioxidative effects in experimental inflammation. Antioxidants, 9(10), 921.

Amin, B., & Hosseinzadeh, H. (2016). Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Medica, 82(01/02), 8–16.

Santiago, A. J., & Donlan, R. M. (2020). Bacteriophage infections of biofilms of health care-associated pathogens: Klebsiella pneumoniae. EcoSal Plus, 9(1).

Shankar, C., Veeraraghavan, B., Nabarro, L. E. B., Ravi, R., Ragupathi, N. K. D., & Rupali, P. (2018). Whole genome analysis of hypervirulent Klebsiella pneumoniae isolates from community and hospital acquired bloodstream infection. BMC Microbiology, 18(1), 1–9.

Wang, G., Zhao, G., Chao, X., Xie, L., & Wang, H. (2020). The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. International Journal of Environmental Research and Public Health, 17(17), 6278.

Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum β-lactamases: a clinical update. Clinical Microbiology Reviews, 18(4), 657–686.

Shah, R. K., Ni, Z. H., Sun, X. Y., Wang, G. Q., & Li, F. (2017). The determination and correlation of various virulence genes, ESBL, serum bactericidal effect and biofilm formation of clinical isolated classical Klebsiella pneumoniae and hypervirulent Klebsiella pneumoniae from respiratory tract infected patients. Polish Journal of Microbiology, 66(4).

Sellick, J. A., & Russo, T. A. (2018). Getting hypervirulent Klebsiella pneumoniae on the radar screen. Current Opinion in Infectious Diseases, 31(4), 341–346.

Liu, C., & Guo, J. (2019). Hypervirulent Klebsiella pneumoniae (hypermucoviscous and aerobactin positive) infection over 6 years in the elderly in China: antimicrobial resistance patterns, molecular epidemiology and risk factor. Annals of Clinical Microbiology and Antimicrobials, 18(1), 1–11.

Choby, J. E., Howard‐Anderson, J., & Weiss, D. S. (2020). Hypervirulent Klebsiella pneumoniae–clinical and molecular perspectives. Journal of Internal Medicine, 287(3), 283–300.

Darniati, D., Setiyaningsih, S., Agungpriyono, D. R., & Handharyani, E. (2021). First evidence of Klebsiella pneumoniae infection in Aceh cattle: Pathomorphology and antigenic distribution in the lungs. Veterinary World, 14(4), 1007.

Jondle, C. N., Gupta, K., Mishra, B. B., & Sharma, J. (2018). Klebsiella pneumoniae infection of murine neutrophils impairs their efferocytic clearance by modulating cell death machinery. PLoS Pathogens, 14(10), e1007338.

Qu, S., Dai, C., Zhu, J., Zhao, L., Li, Y., & Hao, Z. (2018). Cefquinome-loaded microsphere formulations against Klebsiella pneumonia infection during experimental infections. Drug Delivery, 25(1), 909–915.

Blundell-Hunter, G., Enright, M. C., Negus, D., Dorman, M. J., Beecham, G. E., Pickard, D. J., Wintachai, P., Voravuthikunchai, S. P., Thomson, N. R., & Taylor, P. W. (2021). Characterisation of bacteriophage-encoded depolymerases selective for key klebsiella pneumoniae capsular exopolysaccharides. Frontiers in Cellular and Infection Microbiology, 11.

de Oliveira Júnior, N. G., & Franco, O. L. (2020). Promising strategies for future treatment of Klebsiella pneumoniae biofilms. Future Microbiology, 15(1), 63–79.

Gnanasekaran, P., Roy, A., Natesh, N. S., Raman, V., Ganapathy, P., & Arumugam, M. K. (2021). Removal of microbial pathogens and anticancer activity of synthesized nano-thymoquinone from Nigella sativa seeds. Environmental Technology & Innovation, 24, 102068.

Majdalawieh, A. F., & Fayyad, M. W. (2015). Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. International Immunopharmacology, 28(1), 295–304.

Masjidah, F. (2009). The Effect of Various Concentrations of Black Cumin (Nigella Sativa) Extract on the Number of Bacterial Colony Klebsiella pneumoniae. University of Muhammadiyah Malang.

Downloads

Published

2022-07-02

How to Cite

Edward Pandu Wiriansya, Syamsu Rijal, Arina Fathiyyah Arifin, & Muhammad Naufal Zuhair. (2022). The Role of Nigella Sativa as Anti-Inflammation in Klebsiella Pneumonia Infection : A Review. International Journal of Sciences: Basic and Applied Research (IJSBAR), 62(2), 557–567. Retrieved from https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/14212

Issue

Section

Articles