Removal of Lead from Wastewater by Graphene Coated Sand Composite

Authors

  • Seroor Atalah Khaleefa Ali College of Engineering Environmental Engineering Department Al Mustansireyah University –Iraq-Baghdad
  • Lecturer Dr. Mohammed Ibrahim College of Engineering Environmental Engineering Department Al Mustansireyah University –Iraq-Baghdad
  • Hussein Ali Hussein MSc College of Engineering Environmental Engineering Department Al Mustansireyah University –Iraq-Baghdad

Keywords:

GSC, wastewater, lead removal.

Abstract

In this research a process is used to treat contaminated water for its most recent use into an effluent that can be either returned to the water cycle with minimal environmental issues or reused. Lead pollution impacts all the systems of the human body. Many of the methods utilized for treatment. An easy and low cost method was employed to remove lead from wastewater. Graphene was prepared from sugar and normal sand as a media of adhesion in order to produce graphene coated sand media which is well known as graphene coated sand composite (GSC). Physical and chemical tests of the obtained composite were carried out and the functional groups on the surface were identified. SEM and EDX for the composite were also analyzed. Batch process was employed for the study the effect of pH, temperature, contact time and dose, for lead removal. Langmuir and frendlich models were applied. Isotherm data showed that the maximum adsorption capacity of lead was 59.17 mg/g. This fast, low-cost technology can be used to manufacture commercial filters to treat contaminated water using appropriate engineering designs.

References

Machida, M. Mochimaru, T.: Tatsumoto. Lead(II) adsorption only the graphene layer of carbonaceous materials in aqueous solution. Carbon. 2006. pp,2681-2688.

C. L. Chen and X. K. Wang. Ind. Eng. Chem. Res. 2006, USA .pp.45, 9144.

B. D. Shoener, I. M. Bradley, R. D. Cusick and J. S. Guest. Environ. Sci.: Processes Impacts. 2014, pp. 16, 1204.

X. Zhou, Y. X. Li and Y. Zhao. RSC Adv. 2014 ,pp. 4, 15620.

S. Karthikeyan, C. Anandan, J. Subramanian and G. Sekaran. RSC Adv. 2013, pp. 3, 15044.

Alouini and M. Jemli, J. Environ. Monit., 2001 pp. 3, 548.

H. Cao, W. T. Qu and X. L. Yang, Anal. Methods, 2014, pp 6, 3799.

Salem, A.; Sene, R.; Chem. Eng. J. 2011, pp.174, 619.

Su, Q.; Pan B.; Pan, B.; Zhang, Q.; Zhang, W.; Lv, L.; Wang, X.; Wu, J.; Zhang, Q. Sci. Total Environ. 2009, pp. 407, 5471.

Tsunekawa, M.; Ito, M.; Yuta, S.; Tomoo, S.; Hiroyoshi, N.; J. Hazard. Mater. 2011,pp. 191, 388.

Aziz, H. A. ; Adlan, M. N.; Ariffn, K. S.; Bioresource Technol. 2008, pp.99, 1578.

Zhu, H. Y.; Jiang, R.; Fu, Y. Q.; Jiang, J. H.; Xiao, L.; Zeng, G. M.; App. Surf. Sci. 2011,pp. 258, 1337.

Mall, I. D.; Srivastava, V. C.; Agarwal, N. K.; Mishra, I. M . Colloids Surf., 2005,pp. 264, 17.

Uçurum, M.; Fuel 2009, pp. 88, 1460.

Salam, M. A.. Colloid Surf . A 2013, pp. 419, 69.

J. R. Maxwell, C. T. Pillinger and G. Eglinton, Q. Rev., Chem.Soc. 1971, pp. 25, 571.

W. Z. Bao, F. Miao, Z. Chen, H. Zhang, W. Y. Jang, C. Damesand C. N. Lau, Nat. Nanotechnol., 2009, 4, 562.

Artiles, M. S.; Rout, C. S.; Fisher, T. S. Adv. Drug Delivery Rev.2011, pp. 63, 1352−1360.

Balapanuru, J.; Yang, J.-X.; Xiao, S.; Bao, Q.; Jahan, M. Polavarapu, L.; Wei, J.; Xu, Q.-H.; Loh, K. P. Angew. Chem., Ist. Ed. 2010,pp. 49, 6549−6553.

Min, S. K.; Kim, W. Y.; Cho, Y.; Kim, K. S. Nat. Nanotechnol. 2011,

Chandra, V.; Kim, K. S. Chem. Commun. 2011, pp. 47, 3942−3944.

Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I.-C.; Kim, K. S. ACS Nano 2010, 4, 3979−3986.

Imamoglu, M.; Tekir, O. Desalination 2008, pp. 228, 108−113.

Mishra, A. K.; Ramaprabhu, S. Desalination 2011, 282, 39−45.

Yang, S.; Luo, S.; Liu, C.; Wei, W. Colloids Surf., , DOI: 10.1016/j.colsurfb.2012.03.007.

Ayhan, D. J. Hazard. Mater. 2009, 167, 1−9.

Gupta, S. S., Sreeprasad, T. S., Maliyekkal, S. M., Das, S. K. & Pradeep, T. Graphene from Sugar and its Application in Water Purification. Acs Appl. Mater. Interfaces 4, 4156–4163 (2012).

Griffiths, P.; de Hasseth, J. A. (18 May 2007). Fourier Transform Infrared Spectrometry (2nd ed.).Wiley-Blackwell. ISBN 0-47- 19404-2

K. S. Subrahmanyam, P. Kumar, A. Nag and C. N. R. Rao, Solid State Commun., 2010, 150, 1774.

30. N. Chaouch , M.R. Ouahrani, S. Chaouch & N. Gherraf, Adsorption of cadmium (II) from aqueous solutions by activated carbonproduced from Algerian dates stones of Phoenix dactylifera byH3PO4 activation, Journal Desalination and Water Treatment ,2012.

Davidson E. Egirani, synthesis and characterization of kaolinite coated with cu-oxide and its effect on the removal of aqueous mercury(ii) ions: PART II ,International Research Journal of Chemistry and Chemical Sciences,(2017).

V.S. Mane, I.D. Mall, V.C. Srivastava. Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes Pigments 2007, pp. 73: 269-278.

Banerjee SS, Chen DH. Fast removal of copper ions by gum nanoadsorbent. Journal of Hazardous Materials 2007, pp.147: 792-797.

Downloads

Published

2018-01-06

How to Cite

Ali, S. A. K., Ibrahim, L. D. M., & Hussein MSc, H. A. (2018). Removal of Lead from Wastewater by Graphene Coated Sand Composite. International Journal of Sciences: Basic and Applied Research (IJSBAR), 37(1), 1–9. Retrieved from https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/8445

Issue

Section

Articles