A Simple Chemical Method for Deposition of Electrochromic Cobalt Hexacyanoferrate Thin Films

Authors

  • Isak Aliji Institute of Physics, Faculty of Natural Sciences and Mathematics, Saints Cyril and Methodius University, Arhimedova 3, Skopje 1000, Republic of Macedonia Faculty of Natural Sciences and Mathematics Tetovo State University, bul. Ilinden bb, Tetovo 1200, Republic of Macedonia
  • Metodija Najdoski Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Saints Cyril and Methodius University, Arhimedova 5, Skopje 1000, Republic of Macedonia
  • Julijana Velevska Institute of Physics, Faculty of Natural Sciences and Mathematics, Saints Cyril and Methodius University, Arhimedova 3, Skopje 1000, Republic of Macedonia

Keywords:

Chemical deposition, Electrochromism, Cobalt Hehacyanoferrate, Thin films.

Abstract

In this work a simple chemical method for depositing cobalt hexacyanoferrate (CoHCF) films has been developed. The films have been prepared by successive immersion of the fluorine doped glass substrates (FTO) into an acidic aqueous solution of CoCl2 and K4[Fe(CN)6]. The characterization of the films with X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) showed that the films have crystalline structure. The electrochemical properties of the films were characterized by cyclic voltammetry. Obtained films exhibited electrochromism, changing colour reversibly between transparent and brown. Visible transmittance spectra of CoHCF films in their bleached and coloured states were recorded in-situ. Those spectra were used to estimate the optical band gaps. The dependence of the optical density on charge density was examined and used to calculate the colouration efficiency. The response times of the colouring and bleaching to an abrupt potential change from -2 V to +2 V and reverse were also examined. The maximum light intensity modulation ability of the films and saved energy, when the AM 1.5 spectrum is taken as an input, were calculated to be 55% and 243.56 Wm-2, respectively, which makes this films suitable for application in electrochromic devices.

References

Lampert C. M., “Electrochromic materials and devices for energy efficient windows” Sol. Energy Mater. vol. 11, pp 1-27, 1984, DOI: 10.1016/0165-1633(84)90024-8

Monk P. M. S., Mortimer R. J. and Rosseinsky D. R., “Electrochromism: Fundamentals and Applications”, VHC: Weinheim, 1995

Svensson J. S. E. M. and Granqvist C.G., “Electrochromic tungsten oxide films for energy efficient windows”, Solar Energy Mater. vol. 11, pp 29-34, 1984, DOI: 10.1016/0165-1633(84)90025-X

Lee E. S. and Di Bartolomeo D. L., “Application issues for large-area electrochromic windows in commercial buildings”, Sol. Energy Mater. Sol. Cells vol. 71, pp 465-491, 2002, DOI: 10.1016/S0927-0248(01)00101-5

Baetens R., Jelle B. P. and Gustavsen A., “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review”, Sol. Energy Mater. Sol. Cells vol. 94, pp 87–105, 2010, DOI: 10.1016/j.solmat.2009.08.021

Barratt J. and Dowd K., “A New Airplane for a New World: The Boeing 787 Dreamliner” Des. Manag. Rev. vol. 17, pp 25-30, 2010, DOI: 10.1111/j.1948-7169.2006.tb00059.x

Osterholm A. M., Shen D. E., Kerszulis J. A., Bulloch R.H., Kuepfert M., Dyer A. L. and Reynolds J. R., “Four Shades of Brown: Tuning of Electrochromic Polymer Blends Toward High-Contrast Eyewear” ACS Appl. Mater. Interfaces vol. 7, pp 1413-1421, DOI: 10.1021/am507063d

Mortimer R. J. “Electrochromic materials” Chem. Soc. Rev. vol. 26, pp 147-156, 1997, DOI: 10.1039/CS9972600147

Anderson P., Forchheimer R., Tehrani P. and Berggren M., “Printable All-Organic Electrochromic Active-Matrix Displays”, Adv. Funct. Mater. vol. 17, pp 3074-3082, 2007, DOI: 10.1002/adfm.200601241

Chandrasekhar P., Zay B.J., Ross D., Mc Queeney T., Birur G. C., Swanson T., Kauder L. and Douglas D., “Far - IR - through - Visible Electrochromics Based on Conducting Polymers for Spacecraft Thermal Control and Military Uses: Application in NASA’s ST5 Microsatellite Mission and Military Camouflage” American Chemical Society ACS Symposium Series vol. 888, pp 66-79, 2005, Chapter DOI: 10.1021/bk-2005-0888.ch.005

Wang S. M., Liu L., Chen W. L. and Wang E. B., “High performance visible and near-infrared region electrochromic smart windows based on different structures of polyoxometalates”, Electrochim. Acta vol. 113 pp 240-247, 2013, DOI: 10.1016/j.electacta.2013.09.048

Xie Z., Jin X., Chen G., Xu J., Chen D. and. Shen G., “Integrated smart electrochromic windows for energy saving and storage applications”, Chem. Commun. vol. 50, pp 608–610, 2014, DOI: 10.1039/C3CC47950A

Cupelli D., Nicoletta F. P., Manfredi S., Vivacqua M., Formoso P., De Filpo G. and Chidichimo G., “Self-adjusting smart windows based on polymer-dispersed liquid crystals”, Sol. Energy Mater. Sol. Cells vol. 93, pp 2008–2012, 2009, DOI: 10.1016/j.solmat.2009.08.002

Mortimer R. J., “Organic electrochromic materials”, Electrochim. Acta vol. 44, pp 2971-2981, 1999, DOI: 10.1016/S0013-4686(99)00046-8

Granqvist C. G., “Handbook of Electrochromic Materials”, Elsevier: Amsterdam, Holland 1995

Mortimer R. J., “Five Color Electrochromicity Using Prussian Blue and Nafion/Methyl Viologen Layered Films”, J. Electrochem. Soc vol. 138 (2), pp 633-634, 1991, DOI: 10.1149/1.2085647

Pyrasch M., Toutianoush A., Jin W. Q., Schnepf J. and Tieke B., “Self-assembled Films of Prussian Blue and Analogues: Optical and Electrochemical Properties and Application as Ion-Sieving Membranes”, Chem. Mater. vol. 15, pp 245-254, 2003, DOI: 10.1021/cm021230a

Kholoud E., Watanabe H., Takahashi A., Emara M. M., Abd-El-Nabey B. A., Kurihara M., Tajima K and Kawamoto T., “Cobalt hexacyanoferrate nanoparticles for wet-processed brown-bleached electrochromic devices with hybridization of high-spin/ low-spin phases”, J. Mater. Chem. C vol. 5, pp 8921-8926, 2017, DOI: /10.1039/C7TC02576A

Neff V. D., “Electrochemical oxidation and reduction of thin films of Prussian blue”, J. Electrochem. Soc. vol. 125, pp 886-887, 1978, DOI: 10.1149/1.2131575

Zhang D., Wang K., Sun D. C., Xia X. H. and Chen H. Y., “Ultrathin Layers of Densely Packed Prussian Blue Nanoclusters Prepared from a Ferricyanide Solution” Chem. Mater. vol. 15, pp 4163-4165, 2003, DOI: 10.1021/cm034594r

Wang P., Yuan Y., Jing X. Y. and Zhu G. Y., “Amperometric determination of thiosulfate at a surface-renewable nickel (II) hexacyanoferrate-modified carbon ceramic electrode”, Talanta vol. 53, pp 863-869, 2001, DOI: 10.1016/50039-9140(00)00574-9

Siperko L. M. and Kuwana T., “Electrochemical and Spectroscopic Studies of Metal Hexa¬cyano-metalate Films”, J. Electrochem. Soc. vol. 130, pp 396-402, 1983, DOI: 10.1149/1.2119718

Kahlert H., Komorsky-Lovric S., Hermes M. and Scholz F., “A Prussian blue-based reactive electrode (reactrode) for the determination of thallium ions” J. Anal. Chem. vol. 356, pp 204-208, 1996

Neff V. D., “Some Performance Characteristics of a Prussian Blue Battery” J. Electrochem. Soc. vol. 132(6), pp 1382-1384, 1985, DOI: 10.1149/1.2114121

Kaneko M. and Okada T., “A secondary battery composed of multilayer Prussian Blue and its reaction characteristics” J. Electroanal. Chem. vol. 255, pp 45-52, 1988, DOI: 10.1016/0022-0728(88)80003-2

Kalwellis-Mohn S. and Grabner E. W., “A secondary cell based on thin layers of zeolite-like nickel hexacyanometallates”, Electrochim. Acta vol. 34, pp 1265-1269, 1989, DOI: 10.1016/0013-4686(89)87169-5

Escax V., Bleuzen A., Itie J. P., Munsch P., Varret F. and Verdaguer M., “Nature of the Long-Range Structural Changes Induced by the Molecular Photoexcitation and by the Relaxation in the Prussian Blue Analogue Rb1.8Co4[Fe(CN)6]3.3•13H2O. A Synchrotron X-ray Diffraction Study”, J. Phys. Chem. B, vol. 107 (20), pp 4763-4767, 2003, DOI: 10.1021/jp0340313

Kulesza P. J., Malik M. A., Berrettoni M., Giorgetti M., Zamponi S., Schmidt R. and Marassi R., “Electrochemical Charging, Countercation Accommodation, and Spectrochemical Identity of Microcrystalline Solid Cobalt Hexacyanoferrate”, J. Phys. Chem. B, vol. 102 (11), pp 1870-1876, 1998

Demiri S., Najdoski M. and Velevska J., “A simple chemical method for deposition of electrochromic Prussian blue thin films”, Mat. Res. Bull. vol. 46, pp 2484-2488, 2011, DOI: 10.1016/j.materresbull.2011.08.021

Mortimer R. J. and Reynolds J. R., “In situ colorimetric and composite coloration efficiency measurements for electrochromic Prussian blue”, J. Mater. Chem., vol. 15, pp 2226-2233, 2005, DOI: 10.1039/B418771G

De Tacconi N. R., Rajeshwar K. and Lezna R. O., “Electrochemical impedance spectroscopy and UV–VIS reflectance spectroelectrochemistry of cobalt hexacyanoferrate films”, J. Electroanal. Chem. vol. 587, pp 42-55, 2006, DOI: 10.1016/j.elechem.2005.10.018

Kulesza P J., Malik M. A., Miecznikowski K. and Wolkiewicz A. “Counteraction-Sensitive Electrochromism of Cobalt Hexacyanoferrate Films”, J. Electrochem. Soc. vol. 143(1), pp L10-L12, 1996, DOI: 10.1149/1.1836374

Lezna R. O., Romagnoli R., De Tacconi N. R. and Rajeshwar K., “Cobalt Hexacyanoferrate: Compound Stoichiometry, Infrared Spectroelectrochemistry, and Photoinduced Electron Transfer” J. Phys. Chem. B vol. 106(14), pp 3612–3621, 2002, DOI: 10.1021/jp013991r

Shi L. H., Wu T., Wang M. J., Li D., Zhang Y. J. and Li J. H., “Molecule-Based Cobalt Hexacyanoferrate Nanoparticle: Synthesis, Characterization, and Its Electrochemical Properties”, Chinese J. Chem vol. 23 pp 149-154, 2005, DOI: 10.1002/cjoc.200590149

Zhao H. C., Zhang P., Li S. H. and Luo H. X., “Cobalt Hexacyanoferrate-modified Graphene Platform Electrode and Its Electrochemical Sensing toward Hydrogen Peroxide”, Chinese J. Anal. Chem vol. 45 (6) pp 830-836, 2017, DOI: 10.1016/S1872-2040(17)61018-1

Pauliukaite R., Florescu M. and Brett C. M. A., “Characterization of cobalt- and copper hexacyanoferrate-modified carbon film electrodes for redox-mediated biosensors”, J Solid State Electrochem vol. 9, pp 354-362, 2005, DOI 10.1007/s10008-004-0632-8

Ciabocco M., “Synthesis and characterization of metal-hexacyanometallates as innovative materials for analytical and technological applications” PhD thesis, Università di Bologna, Bologna, 2017

Shimamoto N., Ohkoshi S., Sato O. and Hashimoto K., “Control of Charge-Transfer-Induced Spin Transition Temperature on Cobalt-Iron Prussian Blue Analogues”, Inorg. Chem. vol. 41, pp 678-684, 2002, DOI: 10.1021/ic010915u

O-Rueda de Leon J. M., Acosta D. R., Pal U. and Castaneda L., “Improving electrochromic behavior of spray pyrolised WO3 thin solid films by Mo doping”, Electrochim. Acta vol. 56, pp 2599-2605, 2011, DOI: 10.1016/j.electacta2010.11.038

Neskovska R., Ristova M., Velevska J. and Ristov M., “Electrochromism of the electroless deposited cuprous oxide films”, Thin Solid Films vol. 515, pp 4717-4721, 2007, DOI: 10.1016/j.tsf.2006.12.121

Pahal S., Deepa M., Bhandari S., Sood K. N. and Srivastava A. K., “Electrochromism and redox switching of cobalt hexacyanoferrate-polyaniline hybrid films in a hydrophobic ionic liquid”, Sol. Energy Mater. Sol. Cells vol. 94, pp 1064-1075, 2010, DOI: 10.1016/j.solmat.2010.02.027

Esmail A., Hashem H., Soltan S., Hammam M. and Ramadan A., “Thickness dependence of electro-optical properties of WO3 films as an electrochromic functional material for energy-efficient applications”, Phys. Status Solidi A, vol. 1-9, 2016, DOI 10.1002/pssa.201600478

Ristova M., Neskovska R. and Mircevski V., “Chemically deposited electrochromic cuprous oxide films for solar light modulation”, Sol. Energy Mat. Sol. Cells vol. 91, pp 1361-1365, 2007, DOI: 10.1016/j.solmat.2007.05.018

ASTM GI73-03 Standard Tables for Reference Solar Irradiances: Direct Normal and Hemispherical on 370 Tilted Surface, 2012

Liao H. Y., Liao T. C., Chen W. H., Chang C. H. and Chen L. C., “Molybdate hexacyanoferrate (MoOHCF) thin film: Abrownishred Prussian blue analog for electrochromic window application”, Sol. Energy Mat. Sol. Cells vol. 145, pp 8-15, 2016, DOI: 10.1016/j.solmat2015.06.062

Downloads

Published

2018-07-18

How to Cite

Aliji, I., Najdoski, M., & Velevska, J. (2018). A Simple Chemical Method for Deposition of Electrochromic Cobalt Hexacyanoferrate Thin Films. International Journal of Sciences: Basic and Applied Research (IJSBAR), 40(1), 242–257. Retrieved from https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/9084

Issue

Section

Articles