Voltammetric Determination of Penicillin G in Sodium Dodecyl Sulfate/acetate Buffer Media on Glassy Carbon Electrode

  • Joshua M. Sila Department of Chemistry, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
  • Peterson M. Guto Department of Chemistry, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
  • Immaculate N. Michira Department of Chemistry, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
  • Francis B. Mwaura School of Biological Sciences, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
Keywords: Penicillin G, sodium dodecyl sulfate, acetate buffer, voltammetry and detection limits.

Abstract

The presence of residues of penicillin in food products like milk and meat of animal origin exerts negative impact on public health such as drug resistance diseases and severe allergic responses. This work reports development of a simple voltammetric method for detection of penicillin using sodium dodecyl sulfate (SDS) in acetate buffer solution (ABS) on glassy carbon electrode. Addition of SDS to the penicillin G containing acetate buffer solution (ABS) was found to enhance the voltammetric oxidation current signal by about 5 times with insignificant shift of the oxidation potentials. Using cyclic voltammetry, the oxidation potentials for penicillin G were found to be 1.65V vs. Ag/AgCl in SDS/ABS, pH 4.5 and 1.60V vs. Ag/AgCl in ABS, pH 4.5. The diffusion coefficients for penicillin G were found to be 6.01x10-7 cm2/sec and 1.39x10-6 cm2/sec in ABS, pH 4.5 and SDS/ABS, pH 4.5 respectively. Linear concentration range were also investigated using square wave voltammetry and found to lie in the range of 1.25 – 15µM penicillin G in SDS/ABS, pH 4.5 and 2.5 – 10µM penicillin G in ABS, pH 4.5.Limits of detection were also found to be 1.25µM and 2.5µM penicillin G in SDS/ABS, pH 4.5 and ABS, pH 4.5 respectively while limits of quantitation were 3.75µM penicillin G in SDS/ABS, pH 4.5 and 7.5µM penicillin G in ABS, pH 4.5. Possible interferants like Na+, K+, Zn2+, Ca2+, Fe3+, Cl-, NO3-, PO43- and SO42- did not have any significant effect on the anodic currents and oxidation potentials of the penicillin G. These results show that the developed method is sensitive enough for use in the analysis of penicillin G in diverse real samples.

References

Z. Astrid, S. Eric, F. Jean-Marie, C. Paulette, L. André, “Development of New Drugs for an Old Target - The Penicillin Binding Proteins”, Molecules, Vol. 17, pp. 12478 - 12505, 2012.

B. B. Jensen, The impact of feed additives on the microbial ecology of the gut in young pigs. Journal of animal and feed sciences, Vol. 7 (suppl. 1), 45 - 64, 1998.

P. Jana, I. I. Vasile, N. Marcela, “Simultaneous determination of Β-Lactams antibiotics in waste water samples by solid phase extraction followed by high-Perfomance Liquid chromatography and tandem mass spectrometry”, Bucharest-Romania: National Research and Development Institute for Industrial Ecology, 2013.

FAO/WHO. Residue of Veterinary Drugs in Food. Food Standards Programme, Codex Alimentarius Commission. Volume 3. Rome, Italy, 1993.

E. Gustavsson, J. Degelaen, P. Bjurling, A. Sternesjö, “Determination of beta lactams in milk using a surface plasmon resonance-based biosensor”, Journal of Agric. Food Chem, 52 (10), 2791 - 2796, 2004.

A. L. Deweck, Allergology Proceedings. VII Congress of the International Association of Allergology, Excerpt Medico, Amsterdam, the Netherlands, 1971.

G. M. Jones, E. H. Seymour, “Cowside antibiotic residue testing”, Journal of dairy Science, 71 (6), 1691 - 1699, 1988.

E. H. Seymour, G. M. Jones, M. L. McGilliard, “Persistence of residues in milk following antibiotic treatment of dairy cattle”, Journal of Dairy Science, 71 (8), 2292 - 2296, 1988.

M. Jones, On-Farm test for Drug Residues in Milk. Virginia Cooperative Extension. Page 1- 8, Publication No. 401- 404, 1999.

J. L. Henderson, The Fluid Milk Industry 2ndedition, AVI Publishing Company Inc. London. 1971.

M. J. Torres, M. Blanca, J. Fernandez, A. Romano, W. A. De, W. “Aberer, et al. Diagnosis of immediate allergic reactions to beta-lactam antibiotics”, Allergy, 58, 961-972, 2003.

D. T. Frieden. Antibiotic resistance threat in united states of america. Georgia: Centre for disease control and prevention, 2013.

E. Ebimieowei, A. Ibemologi, “Antibiotics: classification and mechanism of action with emphasis on molecular perspective”, International journal of applied microbiology and biotechnology research, Vol. 4(6), 90 - 101, 2016.

WHO. Essential Drugs Monitor. Geneva: EDM, 2000.

Š. Ľubomír, S. Jozef, R. Miroslav, T. Peter, “Voltammetric determination of penicillin V in pharmaceutical formulations and human urine using a boron-doped diamond electrode”, Bioelectrochemistry, 88, 36–41, 2012. doi:10.1016/j.bioelechem.2012.04.004

I. Baranowska, P. Markowski, A. Gerle, J. Baranowski, “Determination of selected drugs in human urine by differential pulse voltammetric technique”. Bioelectrochemistry. 73(1), 5 – 10, 2008.

M. F. Bergamini, M. F. S. Teixeira, E. R. Dockal, N. Bocchi, E. T. G. Cavalheiro, “Evaluation of different voltammetric techniques in the determination of Amoxicillin using a carbon paste electrode modified with [N, N’-ehtylenebis(salicylideneaminato)]Oxovanadium(IV)”. J. Electrochem. Soc. 153(5), E94 – E98, 2006.

P. Norouzi, M. R. Ganjali, P. Daneshgar, T. Alizadeh, A. Mohammadi, “Development of fast Fourier transformation continuous cyclic voltammetry as a highly sensitive detection system for ultra trace monitoring of Penicillin V”, Anal. Biochem. Vol. 360(2), 175 – 181, 2007.

F. A. Nada, A. D. Soher, E. K. Sayed, A, Galal. “Effect of surfactants on the voltammetric responseand determination of an antihypertensive drug”, Talanta , Vol. 72(4), 1438 – 1445, 2007.

F. A. Nada, G. Ahmed, A. A. Rasha, “Voltammetric Behavior and Determination of Isoniazid Using PEDOT Electrode in Presence of Surface Active Agents”, International Journal of Electrochemical Science , Vol. 6, 5097 – 5113, 2011.

P. M. Guto, J. F. Rusling, “Enzyme-like Kinetics of Ferryloxy Myoglobin Formation inFilms on Electrodes in Microemulsions”. J. Phys. Chem. B, Vol. 109, 24457 - 24464, 2005.

P. M. Guto, G. N. Kamau, “Electrochemical Characterization of Myoglobin-Polylysine Films at a Temperature range of 6 - 80o Celsius”. Electroanalysis, 22(11), 1186 – 1190, 2010.

M. Gumustas and S. A. Ozkan, “The Role of and the Place of Method Validation in Drug Analysis Using Electroanalytical Techniques”. The Open Analytical Chemistry Journal, Vol. 5, 1-21, 2011.

Analytical Method Committee. Use (Proper and Improper) of correlation coefficients. Analyst, vol. 113, pp. 1469-1471, 1988.

M. O. Oyagi, J. O. Onyatta, G. N. Kamau, P. M. Guto, “Validation of the Polyacrylic acid/Glassy Carbon Differential Pulse Anodic Stripping Voltammetric Sensor for Simultaneous Analysis of Lead(II), Cadmium(II) and Cobalt(II) Ions”. Int. J. Electrochem. Sci., vol. 11, pp. 3852 – 3861, 2016.

J. M. Sila, P. M. Guto, I. N. Michira, F. B. Mwaura. “Square Wave Voltammetric Determination of Penicillin V in Sodium Dodecyl Sulfate Containing Media on Glassy Carbon Electrode”, International Journal of Sciences: Basic and Applied Research (IJSBAR), Vol. 40, No 1, pp 220-233, 2018.

A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Ed.; Wiley : New York, 2004.

P. M. Guto. “Electrokinetic Behavior of Multiwalled Carbon Nanotubes/Poly-L-lysine Modified Electrodes in Sodium Dodecylsulfate Bicontinuous Microemulsions”, International Journal of Chemical Kinetics, Vol. 49, Issue 8, PP 596 – 601, 2017. DOI 10.1002/kin.21099.

B. Feier, I. Ionel, R. Sndulescu and C. Cristea. “Electrochemical behaviour of several penicillins at high potential”, New J. Chem., 2017, DOI: 10.1039/C7NJ01729D

ˇS. L’ubomir, S. Jozef, P. Tomˇcik, R. Miroslav, B. Duˇsan. “Simultaneous determination of paracetamol and penicillin V by square-wave voltammetry at a bare boron-doped diamond electrode”. Electrochimica Acta, vol. 68, pp. 227 – 234., 2012. doi:10.1016/j.electacta.2012.02.071

M. Thompson, S. L. R. Ellison, R. Wood, “Harmonized Guidelines for Single-LaboratoryValidation of Methods of Analysis (AUPAC technical Report)”. Pure Appl. Chem. Vol. 74, pp. 835, 2002.

P. De Bievre, H. Gunzler, Validation in Chemical Measurement, Springer-Verlag pub. Heidelberg. Eds., 2005.

C. C. Chan, H. Lam, T. C. Lee, X. M. Zhang, Analytical Method Validation and Instrument Performance Verification, Wiley Interscience Pub. Eds. New Jersey, 2004.

ICH Guideline Q2A (RI), Validation of Analytical Procedures: Text and methodology, 2005.

L. Huang, L. Bu, F. Zhao, B. Zeng, “Voltammetric behavior of ethopropazine and the influence of sodium dodecylsulfate on its accumulation on gold electrodes”, J. Solid State Electrochem. Vol. 8, pp. 976 – 981, 2004.

J. Wang, J. M. Lu, U. A. Kirgoz, S. B. Hocevar, B. Ogorevc “Insight into the anodic stripping voltammetric behavior of Bismuth film electrodes”, Anal. Chim. Acta, vol. 434, pp. 29 – 34, 2001.

Published
2018-12-12
Section
Articles