Spline Regression on Percentage of Reflectance Based on Wavelength of Lithium Niobate (LiNbO3) Doped with Ruthenium Oxide (RuO2)

Anne Mudya Yolanda, Muhammad Nur Aidi, Indahwati Indahwati, Irzaman Irzaman

Abstract


The characteristics of LiNbO3 are interesting to learn deeply with statistical analysis to identify unique things to optimize its potential in daily lives. The reflectance of LiNbO3 is influenced by the wavelength which can be described as a regression model in y = f (x) with x is wavelength and y is the percentage of reflectance. Using the parameters of Spline regression, the wavelength can be cut into several segments and each segmentation would have its regression model. This study aimed to estimate percentage of reflectance and to learn the wavelength segmentation at various concentrations (0, 2, 4, and 6 %) of LiNbO3 doped with RuO2. The results show that the influence of the doping process exists and optimum knots is four knots in the second order. Thus, there are five segmentation and regression models for each concentration. Based on minimum/maximum local for each segment, the lowest minimum of reflectance in the first and fifth segment are produced by LiNbO3. In the second and third segments, LiNbO3 doped with RuO2 6% has the highest maximum, while in the fourth segment, the lowest minimum was obtained at LiNbO3 doped with RuO2 6%. Based on its concentration, the lowest local minimum among all segments of LiNbO3 is 25.06 percent and the highest is 32.66 percent, while concentration of 2 and 4% only has the lowest local minimum, respectively at 28.50 and 25.49 percent. For concentrations of 6%, the lowest minimum is 36.90 percent and the highest maximum is reached at 72.305 percent.


Full Text:

PDF

References


Irzaman, S. Henni, Masitoh, M. Muhammad, and Mursyidah, “Optical and structural properties of lanthanum doped lithium niobate thin films,” J. Ferroelectr., vol. 502, no. 1, pp. 9–18, 2016.

A. Z. Simoes et al., “LiNbO3 thin films prepared through polymeric precursor method,” vol. 57, pp. 2333–2339, 2003.

A. Dananjaya, E. S. Sugesti, and P. Daud, “Perancangan modulator optik coplanar stripline frekuensi 10 GHZ untuk Radio-Over-Fiber,” e-Proceeding Eng., vol. 4, no. 1, pp. 197–206, 2017.

M. Zuhri, Novitri, A. A. Setiawan, H. Alatas, and Irzaman, “Optical properties of lithium niobate (LiNbO3) thin film doped with ruthenium oxide,” IOP Conf. Ser. Earth Environ. Sci., vol. 187, no. 012020, 2018.

N. N. Aziizah, V. P. Siregar, and S. B. Agus, “Analisis reflektansi spektral lamun menggunakan spektrometer di pulau tunda Serang , Banten,” J. Teknol. Perikan. dan Kelaut., vol. 6, no. 2, pp. 199–208, 2015.

S. U. R. Sari, “Perbandingan model regresi nonparametrik spline multivariabel dengan menggunakan metode generalized cross validation (GCV) dan metode unbiassed risk (UBR) dalam pemilihan titik knot optimal,” Pros. SI MaNIs (Seminar Nas. Integr. Mat. dan Nilai Islam., vol. 1, no. 1, pp. 154–166, 2017.

M. N. Aidi, A. A. Setiawan, M. Zuhri, H. Alatas, and Irzaman, “ARIMA analysis of ferroelectric lithium niobate (LiNbO3) thin films,” Int. J. Sci. Res. Sci. Eng. Technol., vol. 4, no. 4, pp. 823–848, 2018.

Bramadita, A. H. Wigena, and M. N. Aidi, “Truncated spline regression to estimate regression curve of strontium titanate XRD data,” Int. J. Sci. Res. Sci. Eng. Technol., vol. 6, no. 1, pp. 05-11, 2019.

M. N. Aidi, B. Susetyo, H. Hardhienata, and Irzaman, “Regression and arima residual have high accuracy to estimate percent adsorption spectral based on wavelength at barium titanate,” Int. J. Sci. Res. Sci. Eng. Technol., vol. 4, no. 9, pp. 585–602, 2018.

R. H. Nur, Indahwati, and Erfiani, “Glucose calibration modeling in blood with spline regression approaching to non-invasive tools,” Int. J. Sci. Res. Sci. Eng. Technol., vol. 4, no. 11, pp. 144–149, 2018.

A. Tripena. 2011 “Analisis regresi spline kuadratik.” in Seminar Nasional Matematika dan Pendidikan Matematika. [On-line]. Available: https://core.ac.uk/download/pdf/1106 [2019 Maret 18],.

S. Biedermann, H. Dette, and D. Woods. 2009. “Optimal design for multivariable spline models." [On-line]. Available: 10.17877/DE290R-812 [2019 Feb 16].

S. Spriti, R. Eubank, P. Smith, and D. Young. 2008. “Knot selection for least squares and penalized splines.” J. Stat. Comput. Simul. [On-line]. Available: DOI: 10.1080/00949655.2011.647317 [2019 Maret 20].

S. Spiriti, P. Smith, and P. Lecuyer. 2018. “freeknotsplines: Algorithms for Implementing Free-Knot Splines. R package version 1.0.1." [Computer Programme]. Available: https://CRAN.R-project.org/package=freeknotsplines [2019 Maret 20].

S. Bonner. 2009. “Sample Code for Fitting a Truncated Polynomial Spline to The Temperatures Observed in Montreal for All of 1961 and 1962. [Workshop Material]. Available: http://people.stat.sfu.ca/~cschwarz/Consulting/Trinity/Phase2/TrinityWorkshop/Workshop-material-Simon/Intro_to_splines/Exercises/montreal_temp_5b.R [2019 Maret 20].


Refbacks

  • There are currently no refbacks.


 

 
  
 

 

  


About IJSBAR | Privacy PolicyTerms & Conditions | Contact Us | DisclaimerFAQs 

IJSBAR is published by (GSSRR).