New Discriminant Functions and Geochemistry of the Mamfe Cretaceous Formations (South West Cameroon)

  • Kenfack Nguemo Gatien Romuald University of Dschang, PO BOX, 67, Dschang, Cameroon
  • Tematio Paul University of Dschang, PO BOX, 67, Dschang, Cameroon
  • Ngueutchoua Gabriel University of Yaoundé I, Cameroon
  • TATA Cathryn Ntoboh University of Yaoundé I, Cameroon
  • Ngounou kouokam Annyck Channele University of Dschang, PO BOX, 67, Dschang, Cameroon
  • Wabo Hervé University of Johannesburg, South Africa
  • Tcheumenak Kouemo Jules University of Dschang, PO BOX, 67, Dschang, Cameroon
  • Momo Nouazi Mathieu University of Dschang, PO BOX, 67, Dschang, Cameroon
  • Bokanda Ekoko Eric University of Yaoundé I, Cameroon
Keywords: Mamfe basin, Geochemistry, Fluviolacustrine, Active and Passive margins


Major and trace element geochemistry have been used to unravel the tectonic setting, source rock composition, and depositional environment of sedimentary rocks in the Mamfe formation. Field studies reveal both sub tabular and tabular outcrops indicating a post tectonic sedimentary activity for the subtabualar outcrops. Major element geochemistry reveals a moderate to high proportion (50-75wt %) of silica for the analyzed samples. New discriminant diagrams constructed for usage of adjusted major elements shows samples plotting on collision, arc and rift. Another discriminant plot for adjusted major element combined with trace elements shows samples plotting on active and passive tectonic setting.  Ratios of highly immobile trace elements such as Cr/Th, Th/Sc, Th/Co, and La/Sc conclude a felsic source rock for the studied rocks of the Mamfe formation. Trace elements ratios for redox conditions and marine-continental discrimination such as Ni/Co, U/Th, V/Cr, Th/U, and Y/Ho show that the sedimentary rocks of the   formation were deposited in a shallow oxygenated continental fluvio-lacustrine environment.


Dickinson, W.R., 1985 Interpreting provenance relations from detrital modes of sandstones. In: Zuffa, G.G. (ed) Provenance of Arenites. Dordrecht, Holland: Reidel, pp. 333–361. DOI: 10.1007/978-94-017-2809-6

Basu, A., Young, S.W., Suttner, L.J., James, W.C. and Mack, G.H., 1975. Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation: j.sediment. Petrol., 45, 871-882.

Bokanda, E.E., Ekomane, E., Kenfack, N.G.R., Njilah, K.I., Ashukem, N.E., Paul,T., Bisse S.B., Gabriel,N., Orock, N.S., Belinga, B.C., 2019. Provenance, paleoclimate and diagenetic signatures of sandstones in the Mamfe Basin (West Africa). Heliyon 5 (2019) e01140. doi: 10.1016/j.heliyon.2019. e01140

Bhatia, M. R., 1983. Plate tectonics and geochemical composition of sandstone. The Journal of Geology, 91, 611-627.

Bhatia, M.R., Crook, K.A., 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181-193.

Weltje, G.J., 2012. Quantitative models of sediment generation and provenance: state of the art and future developments. Sedimentary Geology 280, 4–20.

Von Eynatten, H., Dunkl, I., 2012. Assessing the sediment factory: the role of single grain analysis. Earth-Science Reviews 115, 97–120.

Verma, S.P., Armstrong-Altrin, J.S., 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Pre-Cambrian basins. Chemical Geology,355, 117–180.

Verma, S.P., Armstrong-Altrin, J.S., 2016. Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology,332, 1-12.

Eyong, J.T., Wignall, P., Fantong, W.Y., Best, J., Hell, J.V., 2013. Paragenetic sequences of carbonate and sulphide minerals of the MamfeBasin (Cameroon): Indicators of palaeo-fluids, palaeo-oxygen levels anddiagenetic zones. Journal of African Earth Sciences, 86, 25–44.

Nguimbous-Kouoh, J.J., Takougam, E.M.T., Nouayou, R., Tabod, C.T., Manguelle-Dicoum, E., 2012. Structural Interpretation of the Mamfe Sedimentary Basin of Southwestern Cameroon along the Manyu River Using Audiomagnetotellurics. Survey. Geophysics, 7p

Bokanda, E.E., Ekomane, E., Eyong, J.T., Njilah, I.K., Ashukem, E.N., Bisong, R.N., Bisse, S.B., 2018a. Genesis of clastic dykes and soft sediment deformation Structures in the Mamfe Basin, South-West Region, Cameroon: Field Geology Approach. Journal of Geological Research.Volume 2018: 8

Bokanda, E.E., Ekomane, E., Fralick, P., Njilah, I.K., Bisse, S.B., Akono, D.F., Ekoa, B.A.Z., 2018b. Geochemical characteristics of shales in the Mamfe Basin, South West Cameroon: implication for depositional environments and oxidation conditions. J. Afr. Earth Sci. 149 (2019), 131e142.

Le Fur, 1965. Mission Socle-Cretacé, Rapport BRGM sur les indices de Pb/Zn du golfe de Mamfé

Abolo, M.G., 2008. Geology and petroleum potential of the Mamfe Basin, Cameroon, Central Africa, Africa Geoscience Review. Special Publication, 65–77.

Ngueutchoua, G., Ekoa, B. A. Z., Eyong, T. J., Demanou, Z. D., Baba, D. H., Tchami, N. L. (2019). Geochemistry of cretaceous fine-grained siliciclastic rocks from Upper Mundeck and Logbadjeck Formations, Douala sub-basin, SW Cameroon: Implications for weathering intensity, provenance, paleoclimate, redox condition, and tectonic setting. Journal of African Earth Sciences.

Ntokozo, M., Kuiwu, L, and Baojin, Z., 2013. Facies Analysis and depositional environments of the late Palaeozoic coal-bearing madzaringwe formation in the Tshipise-Pafuri Basin, South Africa. Journal of geological research Vol 2013, 11 p

Muhammad, M., Abdul Hadi, A.R., Chow, W.S., Zainey, K., 2018. Facies associations, depositional environments and stratigraphic framework of the Early Miocene-Pleistocene successions of the Mukah-Balingian Area, Sarawak, Malaysia, Journal of Asian Earth Sciences 152 23–38

Eyong, J.T., Ngueutchoua, G., Bessong, M., Hell, J.V., Bokanda, E.E., Wignall, P., Best, J., 2018. Sedimentologic and palaeoenvironmental evolution of the Mamfe Cretaceous Basin (SW Cameroon): evidence from lithofacies analysis, tectonics and evaporate minerals suite. Journal of African Earth Sciences,149, 19–41.

Li, ZC., Li, W.H., Lai, S.C., Li, Y.X., Li, Y.H., Shang, T., 2015. The palaeosalinity analysis of Paleogene lutite in Weihe Basin. ActaSedimentol Sin. 33(3):480–485 (in Chinese with English abstract)

Zhao, B.S., Jin, Z., Geng, Y., Wen, X., Yan, C., 2016b. Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin, China. Int J Coal Geol. 163:52–71

Zhao, B.S., Li, R.X., Wang, X.Y., Wu, X.Y., Wang, N., Qin, X.I., Cheng, J.H., Li, J.J., 2016a. Sedimentary environment and preservation conditions of organic matter analysis of Shanxi Formation mud shale in Yanchang exporation area, Ordos Basin. Geol. Sci. Technol. Inf. 35(6):103–111 (in Chinese with English abstract)

Thomas, C.W., Aitchison, J., 2005. Compositional data analysis of geological variability and

process: a case study. Mathematical Geology 37, 753–772.

Kröner, A. Stern, R.J., 2004. Pan-African Orogeny. Elsevier, Amsterdam, 1, 1-12.

Toteu, S.F., Penaye, J., Djomani, Y.P., 2004. Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth science, 41, 73-85.

Garver, J.I, Royce, P.R., Smick, T.A., 1996. Chromium and Nickel in Shale of the Taconic Foreland; a Case Study for the Provenance of Fine-Grained Sediments with an Ultramafic Source. Journal of Sedimentary Research 66:100–106.

. [27] Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., Ramasamy, S., 2004. Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering, and tectonic setting: Journal of Sedimentary Research, 74(2), 285-297.

Cullers, R.L., 2002. Implications of elemental of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestone near Pueblo, CO, USA. Chemical Geology, 191, 305-327.

Delu, L., Rongxi, L., Zengwu, Z., Xiaoli, W., Futian, L., Bangsheng, Z., Jinghua, C., Baoping, W., 2017. Elemental characteristics and paleoenvironment reconstruction: a case

Xie, G., Shen, Y., Liu, S., Hao, W., 2018. Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in XihuSag, East China Sea Basin: Implications for provenance, depositional conditions and paleoclimate. Marine and Petroleum Geology. 1: 1-35.

Abigail, C.A., Balz, S.K., Malcolm, R.W., Ian, W., Isik K., 2010. Trace elements record depositional history of an Early Archean stromatolitic carbonate platform. Chemical Geology. 270, 148–163.