Two Conditionalproofs of Riemann Hypothesis

  • Jamal Y. Mohammad Salah Department of Basic Science, College of Health and Applied Sciences, A’Sharqiyah University, Ibra post code 400 Oman
Keywords: Riemann Hypothesis, Analytic Continuity, Functional Equation, Hankel Contour

Abstract

We consider the analytic continuity of the Riemann zeta function through the Hankel contour. We detect a sort of non accuracy in the functional equation with a significantly small error that we consider to conditionally prove Riemann Hypothesis in two ways.

References

Leonhard Euler. Variae observationes circa series infinitas. Commentarii academiae scientiarum Petropolitanae 9, 1744, pp. 160-188.

B. Riemann, Uber die Anzahl der Primzahlen unter eine gegebene Grosse 1859

Bombieri, Enrico (2000), The Riemann Hypothesis – official problem description (PDF), Clay Mathematics Institute, retrieved 2008-10-25

Borwein, Peter; Choi, Stephen; Rooney, Brendan; Weirathmueller, Andrea, eds. (2008), The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, New York: Springer, doi:10.1007/978-0-387-72126-2, ISBN 978-0-387-72125-5

Harold M. Edwards. Riemann’s Zeta Function. 1974. Dover Publications.

Jekel, David. The Riemann Zeta Function." The University of Washington. n.p., 6 June 2013. Web.

Https: ==www: math: Washington: Edu= morrow=33613=papers=David: pdf

J. E. Littlewood The Riemann Hypothesis TheScientist Speculates, New York: Basic books, 1962

Published
2020-01-17
Section
Articles