Fast Fuzzy C-Means Algorithm Incorporating Convex Combination of Bilateral Filter with Contrast Limited Adaptive Histogram Equalization

Authors

  • K. Kadambavanam Associate Professor and Head (Retd.), Department of Mathematics, Sri. Vasavi College, Erode, Tamil Nadu, India.
  • T. Senthilnathan Associate Professor, Department of Mathematics, Erode Arts and Science College, Erode-638 009, Tamil Nadu, India.

Keywords:

Fuzzy logic, Image filtering, Histogram equalization, Impulse noise, Noise detection.

Abstract

Fast Generalized Fuzzy c-means clustering algorithm (FGFCM) and its variants are effective methods for image clustering. Even though the incorporation of local spatial information to the objective function reduces their sensitivity to noise to some extent, they are still lack behind in suppressing the effect of noise and outliers on the edges and tiny areas of input image. This article proposes an algorithm to mitigate the disadvantage of FGFCM and its variants and enhances the performance of clustering.

References

J.C. Bezdek, L.O.Hall, & L.P. Clarke,

W.M. Wells III, W.E.L. Grimson, R. Kikinis and F.A. Jolesz, "Adaptive segmentation of MRI data", IEEE Transactions on Medical Imaging, vol. 15, no. 4, pp. 429-442, 1996.

M. S. Yang, Y. J. Hu, K. C. R. Lin and C. C. L. Lin, "Segmentation techniques for tissue differentiation in MRI of Ophthalmology using fuzzy clustering algorithms", Magnetic Resonance Imaging, vol. 20, no. 2, pp. 173-179, 2002.

A. Ghosh, N. S. Mishra and S. Ghosh, "Fuzzy clustering algorithms for unsupervised change detection in remote sensing images", Information Sciences, vol. 181, no. 4, pp. 699-715, 2011.

F. H

J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. Springer Science & Business Media, 2013.

G. C. Karmakar and L. S. Dooley, "A generic fuzzy rule based image segmentation algorithm", Pattern Recognition Letters, vol. 23, no. 10, pp. 1215-1227, 2002.

J. K. Udupa and S. Samarasekera, "Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation", Graphical Models and Image Processing, vol. 58, no. 3, pp. 246-261, 1996.

S. M. Yamany, A. A. Farag and S. Y. Hsu, "A fuzzy hyperspectral classifier for automatic target recognition (ATR) systems", Pattern Recognition Letters, vol. 20, no. 11-13, pp. 1431-1438, 1999.

D. L. Pham and J. L. Prince, "An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities", Pattern Recognition Letters, vol. 20, no. 1, pp. 57-68, 1999.

A. W. C. Liew, S. H. Leung and W. H. Lau, "Fuzzy image clustering incorporating spatial continuity", IEE Proceedings - Vision, Image, and Signal Processing, vol. 147, no. 2, p. 185, 2000.

Y. A. Tolias and S. M. Panas, "Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions", IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 28, no. 3, pp. 359-369, 1998.

Y. A. Tolias and S. M. Panas, "On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system", IEEE Signal Processing Letters, vol. 5, no. 10, pp. 245-247, 1998.

D. L. Pham, "Fuzzy clustering with spatial constraints", in IEEE Proc. Int. Conf. Image Processing, New York, 2002, pp. II-65

M. N. Ahmed, S. M. Yamany, A. A. Farag and T. Moriarty, "Bias field estimation and adaptive segmentation of MRI data using a modified fuzzy C-means algorithm", in IEEE Computer Society Conference, 1999, pp. [Vol. 1 pp. 250

M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty,

S. Chen and D. Zhang, "Robust Image Segmentation Using FCM With Spatial Constraints Based on New Kernel-Induced Distance Measure", IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 4, pp. 1907-1916, 2004.

L. Szilagyi, Z. Benyo, S. M. Szil

W. Cai, S. Chen and D. Zhang, "Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation", Pattern Recognition, vol. 40, no. 3, pp. 825-838, 2007.

C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images", in Computer Vision, 1998. Sixth International Conference, Bombay, pp. 839 - 846. IEEE,2008.

F. Durand and J. Dorsey,

S. Bae, S. Paris, and F. Durand,

K. Zuiderveld: Contrast Limited Adaptive Histogram Equalization. In: P. Heckbert: Graphics Gems IV, Academic Press 1994, ISBN 0-12-336155-9.

P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629-639, 1990.

J. Weickert. Anisotropic diffusion in image processing Stuttgart: Teubner, Vol. 1, pp. 59-60,1998

P. Guidotti, "Some Anisotropic Diffusions", in Ulmer Seminare, 2009, pp. Vol. 14 , 215-221.

C.T. Lin and C.G. Lee,

F. Masulli and A. Schenone, "A fuzzy clustering based segmentation system as support to diagnosis in medical imaging", Artificial Intelligence in Medicine, vol. 16, no. 2, pp. 129-147, 1999.

A. Ben Hamza and H. Krim, "Image denoising: a nonlinear robust statistical approach", IEEE Transactions on Signal Processing, vol. 49, no. 12, pp. 3045-3054, 2001.

http://Mathworks, Natick, MA. Image Processing Toolbox. [Online] Available: htttp://www.mathworks.com. [Accessed: May, 21- 2016]

R. K. S. Kwan, A. C. Evans and G. B. Pike, "An Extensible MRI Simulator for Post-Processing Evaluation", in 4th International Conference on Visualization in Biomedical Computing, Springer-Verlag, 1996, pp. 135-140.

P. Choudhury and J. Tumblin,

Downloads

Published

2016-06-25

How to Cite

Kadambavanam, K., & Senthilnathan, T. (2016). Fast Fuzzy C-Means Algorithm Incorporating Convex Combination of Bilateral Filter with Contrast Limited Adaptive Histogram Equalization. International Journal of Sciences: Basic and Applied Research (IJSBAR), 28(1), 146–165. Retrieved from https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/5804

Issue

Section

Articles