Evaluation of the Potential Neurotoxicity of Gold Nanoparticles in the Different Rat Brain Regions

Authors

  • Neveen A. Noor Zoology Department, Faculty of Science, Cairo University, Egypt
  • Heba M. Fahmy Biophysics Department, Faculty of Science, Cairo University, Egypt
  • Iman M Mourad Zoology Department, Faculty of Science, Cairo University, Egypt

Keywords:

nanoparticles, oxidative stress, AChE, brain, rat.

Abstract

The present study aims to investigate the potential adverse effects of gold nanoparticles (Au NPs) in the cortex, hippocampus, striatum, midbrain, cerebellum and medulla of adult male Wistar rat through the estimation of some oxidative stress parameters and acetylcholinesterase (AChE) activity. Rats were divided into two main experimental groups. Animals of the 1st and 2nd groups were intraperitoneally injected with a single dose (100

References

M. Ferrari. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 5; 161

J. C. Olivier. Drug transport to brain with targeted nanoparticles. NeuroRx., 2(1); 108

T. C. Yih, and M. Al-Fandi, Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem., 97 (6), 1184-1190, Apr 2006.

K..Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res., 14(5); 1310

T.T. Selvan, D.K..Tan, N.R. Yi, Jana. Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir, 26(14); 11631

M. Crosera, M. Bovenzi, G. Maina, G. Adami, C. Zanette, et al. Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health, 82(9); 1043

B.J. Marquis, S.A. Love, K..L. Braun, C.L.Haynes. Analytical methods to assess nanoparticle toxicity. Analyst, 134(3); 425

P.R. Lockman, J.M. Koziara, R.J. Mumper, D.D. Allen. Nanoparticle surface charges alter blood

H.S. Sharma, A. Sharma. Nanoparticles aggravate heat stress induced cognitive deficits, blood

J.Wang, G. Zhou, C. Chen, H. Yu, T. Wang, Y. Ma, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 168(2); 176

P.M. Tiwari, K.. Vig, V.A. Dennis, S.R. Singh. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials, 1(1); 31-63, 2011.

L. Dykman, N. Khlebtsov. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem Soc Rev., 41(6); 2256-82, Nov 2012.

Y.C. Yeh,, B. Creran, V.M. Rotello. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale, 4(6); 1871-80, Mar 2012.

C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 382; 607

K.. Sokolov, M. Follen, J. Aaron, A. Malpica, R. Lotan, R .Richards-Kortum. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res., 63(9); 1999

R. Levy, N.T. Thanh,, R.C. Doty, I. Hussain, R. J. Nichols, D.J. Schiffrin, et al. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Am Chem Soc., 126(32); 10076

C.Y. Tsai, A.L. Shiau, P.C. Cheng, D.P. Shieh, D.H. Chen, H.C.Chen et al. A biological strategy for fabrication of Au/EGFP nanoparticle conjugates retaining bioactivity. Nano Lett., 4(7); 1209

Z.Z.J. Lim, J.E.J. Li, C.T. Ng, L.Y.L.Yung, B.H. Bay. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin., 32(8); 983-90. Aug 2011.

D.N. Heo, D..N.Yang, D.H. Moon, H.J. Lee, J.B. Bae, M.S.Lee. et al. Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials, 33(3)

S. Jain, D.G. Hirst, J..M. O'sullivan. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol., 85(1010);101-13, Feb 2012.

G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R E. McLaughlin. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv.,11(3); 169

N. L. Rosi, D. A. Giljohann, C. S. Thaxton, A. K.. Lytton-Jean, , M. S.Han, C. A. Mirkin,. Oligo- nucleotide -modified gold nanoparticles for intracellular gene regulation. Science, 312; 1027

P. Ghosh, G. Han, M.De, C. K..Kim, V. M. Rotello. Gold nanoparticles in delivery applications. Adv.Drug Deliv. Rev., 60 (11); 1307

T. S. Hauck, A. A. Ghazani, W. C. Chan. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small, 4(1) : 153

J.M. Koziara, P.R. Lockman, D.D. Allen, R.J. Mumper. In situ blood-brain barrier transport of nanoparticles. Pharmaceutical Research, 20 (11); 1772

E. Garcia-Garcia, K. Andrieux, S. Gil, P. Couvreur. Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm., 298 (2); 274

D.J. Begley. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther.,104 (1); 29

E.E.Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small,1 (3) ; 325-332, Mar 2005.

G. Schmid. The relevance of shape and size of Au55 clusters. Chem Soc Rev., 37(9);1909

Y. Pan, A. Leifert, D. Ruau, S. Neuss, J. Bornemann, G. Schmid, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 5(18); 2067

H. Y. Jia, Y. Liu, X. J. Zhang, L. Han, L. B. Du, et al. Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum. J. Am. Chem. Soc., 131 (1); 40

J.J. Li, L. Zou, D. Hartono, C.N. Ong, B.H. Bay, L.Y. Lanry Yung. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv. Mater., 20 (1); 138

D.A. Butterfield, E.R. Stadtman. Protein oxidation processes in aging brain, Adv. Cell Aging Gerontol., 2; 161-191, 1997.

M.E. Ferreira, A. S.de Vasconcelos, T. da Costa Vilhena, T.L. da Silva, A.. da Silva, et al. Oxidative Stress in Alzheimer's Disease: Should We Keep Trying Antioxidant Therapies? Cell. Mol. Neurobiol., 35 (5); 595-614, Jul 2015.

M.B. Ruiz-Larrea, A. M. Leal, M. Liza, M. Lacort, H. de Groot. Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids, 59 (6); 383

G.L. Ellman. Tissue sulfhydryl groups. Arch Biochem., 82 (1); 70-77, May 1959.

H. Moshage, B. Kok, J.R. Huizenga. Nitrite and nitrate determination in plasma: a critical evaluation. Clin Chem., 41 (6 pt1); 892-896, Jun 1995.

W.H. Habig, M.J. Pabst, W.B. Jakoby. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem., 249 (22); 7130-7139, Nov 1974.

G.L. Ellman, K.. D.Courtney, V. Andres, R.M. Feather-Stone. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7 (2); 88

V. Gorun, I. Proinov, V. Baltescu, G. Balaban, O. Barzu. Modified Ellman procedure for assay of cholin- esterase in crudeenzymatic preparations. Anal. Biochem., 86 (1); 324

J. H. Kim, K.W. Kim. M.H. Kim, Y. S. Yu. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology, 20 (50); 505101, Dec 2009

G. Sonavane, K. Tomada, K. Makino. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B: Bio interfaces, 66 (2); 274

E. Cardoso, G.T. Rezin, E.T. Zanoni, F. de Souza Notoya, D.D. Leffa, et al. Acute and chronic administration of gold nanoparticles cause DNA damage in the cerebral cortex of adult rats. Mutat Res., 766-767; 25-30, Aug- Sep 2014.

N.J. Siddiqi,, M.A. Abdelhalim, A.K. El-Ansary, A.S. Alhomida, W.Y. Ong. Identification of potential bio- markers of gold nanoparticle toxicity in rat brains. J Neuroinflammation, 9;123, Jun 2012.

R. Shrivastava, P. Kushwaha, Y.C. Bhutia, S. Flora. Oxidative stress induced following exposure to silver and gold nanoparticles in mice. Toxicol Ind Health, Epub ahead of print, Dec 2014.

R. Dringen. Metabolism and functions of glutathione in brain. Prog Neurobiol., 62 (6);649, Dec 2000.

R. Dringen, J..M. Gutterer, J. Hirrlinger. Glutathione metabolism in brain. Metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem., 267 (16); 4912

M.I. Yousef. Aluminium induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid. Toxicol., 199 (1); 47, Jun 2004.

R. M. Clancy, D. Levartovsky, J. Leszczynska-Piziak, J. Yegudin, S.B. Abramson Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary. Proc Nat Acad Sci U S A.; 91 (9): 3680, Apr 1994.

S. Jung, M. Bang, B.S. Kim,. S. Lee, N.A. Kotov, B. Kim. Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS One. 9(3); e91360, Mar 2014

S.K. Balasubramanian, K..W. Poh, C.N. Ong, W.G. Kreyling, W.Y. Ong, L.E. Yu. The effect of primary particle size on biodistribution of inhaled gold nano-agglomerates. Biomaterials. 34(22); 5439-52, Jul 2013.

Y.G. Prall, K..K..Gambir, F.R. Ampy. Acetylcholinesterase: an enzymatic marker of human red blood cell aging. Life Sci., 63 (3) ;177

A. Pitkanen, K. Lukasiuk. Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav., 14 (Suppl. 1); 16

A. Simonie,

R.M. Freitas, G.S.B. Viana, M.M.F. Fonteles. Striatal monoamines levels during status epilepticus. Rev Psiquiatr Clin., 30 (3); 76

Y.S. Chen, Y.C. Hung, L.W. Lin, I. Liau, M.Y. Hong, G.S. Huang. Size dependent impairment of cognition in mice caused by the injection of gold nanoparticles. Nanotechnology. 21(48); 485102, Dec 2010.

E. Giacobini, Cholinesterase inhibitor therapy stabilizes symptoms of Alzheimer disease. Alzheimer Dis Assoc Disord., 14; S3

H.E. Harooni, N. Naghdi, H. Sepehri, A.H. Rohani, The role of hippocampal nitric oxide on learning and immediate short and long-term memory retrieval in inhibitory avoidance task in male adult rats. Behav Brain Res., 201 (1) ; 166

V. Paul, P. Ekambaram, Involvement of nitric oxide in learning & memory processes. Indian J Med Res., 133(5); 471

Downloads

Published

2016-12-14

How to Cite

A. Noor, N., M. Fahmy, H., & M Mourad, I. (2016). Evaluation of the Potential Neurotoxicity of Gold Nanoparticles in the Different Rat Brain Regions. International Journal of Sciences: Basic and Applied Research (IJSBAR), 30(5), 114–129. Retrieved from https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/6641

Issue

Section

Articles