Physicochemical Characteristics of Carboxymethyl Chitosan from Silkworm (Bombyx mori L.) Pupa

Authors

  • Dzul Fadly Graduate Student, Department of Community Nutrition, Faculty of Human Ecology, Bogor Agricultural University, Bogor,16680, Indonesia
  • Clara M. Kusharto Department of Community Nutrition, Faculty of Human Ecology, Bogor Agricultural University, Bogor, 16680, Indonesia
  • Lilik Kustiyah Department of Community Nutrition, Faculty of Human Ecology, Bogor Agricultural University, Bogor, 16680, Indonesia
  • Pipih Suptijah Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, Bogor Agricultural University, Bogor, 16680, Indonesia

Keywords:

Bombyx mori L., carboxymethyl chitosan, characteristics, NaOH, molarity.

Abstract

Carboxymethyl chitosan (CMC) is one of chitosan derivatives which is able to give health benefits as well as antioxidant source. Instead crustacean, silkworm pupa is also an alternative source of chitosan. This experimental study was carried out to find the optimum molarity of NaOH (5 M, 10 M, and 15 M) on alkalization process in CMC silkworm pupa production based on its physicochemical characteristics. The best CMC characteristics were yield about 113.79 % - 115.94 %, alkalinity levels about 4.01 - 4.22, moisture contents about 10.80 % - 11.99 %, ash contents about 0.04 % - 0.37 %, nitrogen totals about 4.06 % - 4.76 %, solubility about 93.39 % - 99.28 %

Author Biography

Dzul Fadly, Graduate Student, Department of Community Nutrition, Faculty of Human Ecology, Bogor Agricultural University, Bogor,16680, Indonesia

References

J. Yang, I. Shih, Y. Tzeng, S. Wang. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzym Microb Technol. 26: 406

M. Zhang, A. Haga, H. Sekiguchi, S. Hirano. Structure of insect chitin isolated from beetle larva cuticle abd silkworm (Bombyx mori) pupa exuvia. Int J Biol Macromolec. 27: 99 - 105. 2000.

L. Zhu, Y.Q. Zhang. Postoperative anti-adhesion ability of a novel carboxymethyl chitosan from silkworm pupa in a rat cecal abrasion model. Mater Sci Eng C. Mater. Biol. Appl. 61: 387

H.N. Suresh, C.A. Mahalingam, Pallavi. Amount of chitin, chitosan and chitosan based on in chitin weight in pure races of multivoltine and bivoltine silkworm pupae Bombyx mori L. IJSN. 3(1): 214

Y. Sun, Z.L. Chen, X.X. Yang, P. Huang, X.P. Zhou, X.X. Du. Magnetic chitosan nano-particles as a drug delivery system for targeting photodynamic therapy. Nanotechnology. 20: 135102 - 135110. 2009.

P. Suptijah, Uju, M.J.A. Saputra. Karakteristik Carboxymethyl Chitosan Dengan Variasi Konsentrasi NaOH. Dinamika Maritim. IV: 53

X. Xue, L. Li, J. He. The performance of carboxymethyl chitosan in wash-off reactive dyeing. Carbohydr Polym. 75: 203 - 207. 2009.

[AOAC] Asssociation of Official Analytical Chemist. Official Method of Analysis of the Association of Official Analytical of Chemist. (US) Virginia: The Association of Analytical Chemist, Inc. 2005.

P.K. Dutta, J. Dutta, V.S. Tripathi. Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res. 63: 20 - 31. 2004.

A.T. Paulino, J.I. Simionato, J.C. Garcia, J. Nozaki. Characterization of chitosan and chitin produced from silkworm crysalides. Charbohydr Polim. 64: 98

J. Basmal, A. Prasetyo, Y.N. Fawzya. Pengaruh konsentrasi asam monokloroasetat dalam proses karboksimetilasi chitosan terhadap karboksimetil chitosan yang dihasilkan. J Lit Perikan Ind. 11: 1

J. Basmal, A. Prasetyo, Y. Farida. Pengaruh suhu eterifikasi terhadap kualitas dan kuantitas chitosan larut air yang dibuat dari cangkang rajungan. JBBKP. 2: 99 - 106. 2007.

R.J. Fessenden, J.S. Fessenden, M.W. Logue. Organic Chemistry 5th edition. (US) Mississippi: Delta State university. 1998.

A. Zamani, D. Henrikson, M.J. Taherzadeh. A new foaming technique for production of superabsorbents from carboxymethyl chitosan. Carbohydr Polym. 80: 1091

Z.M. Ali, A.J. Laghari, A.K. Ansari, M.Y. Khuhawar. Synthesis and characterization of carboxymethyl chitosan and its effect on turbidityremoval of river water. IOSR-JAC. 5: 72

Central Connecticut State University. Table of IR sbsorbtions. www.ccsu.edu [17th Desember 2016]. 2013.

H. Rahmawati, D. Iskandar. Sintesis karboksimetil kitosan terhadap pengaruh konsentrasi natrium hidroksida dan rasio kitosan dengan asam monokloro asetat. Technoscientia. 6: 2. 2014.

F. Seyfarth, S. Dchliemann, P. Elsner, U.C. Hipler. Antifungal effect of high and low molecular weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-D-glucosamine against Candida albicans, Candida krusei and Candida glabrata. Int J Pharm. 353: 139

L.R. Feller, M.H. Wilt. Evaluation of cellulose ethers for conservation. The Getty Conservation Institute (US). 1990.

A. Wijayani, K. Ummah, S. Tjahjani. Karakterisasi karboksimetil selulosa (CMC) dari eceng gondok (Eichornia crassipes (Mart) Solms). Indo J Chem. 5 (3): 228 - 231. 2005.

Downloads

Published

2017-01-12

How to Cite

Fadly, D., M. Kusharto, C., Kustiyah, L., & Suptijah, P. (2017). Physicochemical Characteristics of Carboxymethyl Chitosan from Silkworm (Bombyx mori L.) Pupa. International Journal of Sciences: Basic and Applied Research (IJSBAR), 31(1), 204–212. Retrieved from https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/6779

Issue

Section

Articles