Cells Isolated from Cadaveric Bone Marrow are Safe for Use in Bone Healing and Effective at Promoting Osteogenic Re-construction

Authors

  • Wendy W Weston Vivex Biomedical/UMTB Biomedical, 1951 NW 7th Ave, Miami, FL 33136, U.S.A
  • Miguel Quevedo Vivex Biomedical/UMTB Biomedical, 1951 NW 7th Ave, Miami, FL 33136, U.S.A
  • Stuart Oglesby Vivex Biomedical/UMTB Biomedical, 1951 NW 7th Ave, Miami, FL 33136, U.S.A
  • Timothy Ganey Atlanta Medical Center, 303 Parkway Dr NE, Atlanta, GA 30312, U.S.A
  • H. Thomas Temple Nova Southeastern University, 3301 College Ave, Fort Lauderdale, FL 33314, U.S.A

Keywords:

MSC, cadaveric, cryopreservation, immune modulation, fracture repair.

Abstract

The efficacy and immune-modulation of mesenchymal stem cells is well documented. The issue of obtaining mesenchymal stem cells without patient risk, extensive intra-operative procedure, cell manipulation or exposure of cells to harmful reagents remains an issue. This study was designed to test the viability, composition and osteogenic potential of cells derived from cadaveric bone marrow by a new process. Vertebral bone from cadavers was collected within 24 hours of death, processed by a new procedure of tumbling and collection, and evaluated for viability, marker expression, cell composition, and inflammatory properties at various stages of the isolation process and following cryopreservation. Viability was excellent in all fractions and at all stages of the study. Cell staining and microscopic observation showed increased erythrocyte content in the first tumble of bone for marrow extraction, as well as gross observation of debris.

Cryopreservation favored the preservation of CD45-/CD105+ and GlycoA-/STRO-1+ mesenchymal stem cells at the expense of platelets, red blood cells, white blood cells and neutrophils. The resulting cell solution contains a percentage of mesenchymal stem cells far above that required for immune modulation. A mixed lymphocyte reaction assay showed no inflammatory response to this cell composition. The cells produced and preserved in this manner are viable, should elicit no immune response, suppress recipient immune responses and osteogenically differentiate.


References

M. Di Nicola, C. Carlo-Stella, M. Magni, M. Milanesi, P. D. Longoni, P. Matteucci, et al. "Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli." Blood, vol. 99, pp. 3838-43, May 15 2002.

K. Le Blanc, L. Tammik, B. Sundberg, S. E. Haynesworth, and O. Ringden. "Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex." Scand J Immunol, vol. 57, pp. 11-20, Jan 2003.

W. T. Tse, J. D. Pendleton, W. M. Beyer, M. C. Egalka, and E. C. Guinan. "Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation." Transplantation, vol. 75, pp. 389-97, Feb 15 2003.

A. E. Aksu, E. Horibe, J. Sacks, R. Ikeguchi, J. Breitinger, M. Scozio, et al. "Co-infusion of donor bone marrow with host mesenchymal stem cells treats GVHD and promotes vascularized skin allograft survival in rats." Clin Immunol, vol. 127, pp. 348-58, Jun 2008.

P. Sbano, A. Cuccia, B. Mazzanti, S. Urbani, B. Giusti, I. Lapini, et al. "Use of donor bone marrow mesenchymal stem cells for treatment of skin allograft rejection in a preclinical rat model." Arch Dermatol Res, vol. 300, pp. 115-24, Mar 2008.

F. Casiraghi, N. Azzollini, P. Cassis, B. Imberti, M. Morigi, D. Cugini, et al. "Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells." J Immunol, vol. 181, pp. 3933-46, Sep 15 2008.

Z. F. Hong, X. J. Huang, Z. Y. Yin, W. X. Zhao, and X. M. Wang. "Immunosuppressive function of bone marrow mesenchymal stem cells on acute rejection of liver allografts in rats." Transplant Proc, vol. 41, pp. 403-9, Jan-Feb 2009.

S. Itakura, S. Asari, J. Rawson, T. Ito, I. Todorov, C. P. Liu, et al. "Mesenchymal stem cells facilitate the induction of mixed hematopoietic chimerism and islet allograft tolerance without GVHD in the rat." Am J Transplant, vol. 7, pp. 336-46, Feb 2007.

M. G. Solari, S. Srinivasan, I. Boumaza, J. Unadkat, G. Harb, A. Garcia-Ocana, et al. "Marginal mass islet transplantation with autologous mesenchymal stem cells promotes long-term islet allograft survival and sustained normoglycemia." J Autoimmun, vol. 32, pp. 116-24, Mar 2009.

K. Le Blanc, F. Frassoni, L. Ball, F. Locatelli, H. Roelofs, I. Lewis, et al. "Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study." Lancet, vol. 371, pp. 1579-86, May 10 2008.

K. Le Blanc, I. Rasmusson, B. Sundberg, C. Gotherstrom, M. Hassan, M. Uzunel, et al. "Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells." Lancet, vol. 363, pp. 1439-41, May 1 2004.

O. Ringden, M. Uzunel, I. Rasmusson, M. Remberger, B. Sundberg, H. Lonnies, et al. "Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease." Transplantation, vol. 81, pp. 1390-7, May 27 2006.

F. P. Barry, R. E. Boynton, S. Haynesworth, J. M. Murphy, and J. Zaia. "The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105)." Biochem Biophys Res Commun, vol. 265, pp. 134-9, Nov 1999.

A. I. Caplan. "Mesenchymal stem cells." J Orthop Res, vol. 9, pp. 641-50, Sep 1991.

J. E. Dennis, J. P. Carbillet, A. I. Caplan, and P. Charbord. "The STRO-1+ marrow cell population is multipotential." Cells Tissues Organs, vol. 170, pp. 73-82, 2002.

P. J. Simmons and B. Torok-Storb. "Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1." Blood, vol. 78, pp. 55-62, Jul 1 1991.

S. Gronthos, S. E. Graves, S. Ohta, and P. J. Simmons. "The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors." Blood, vol. 84, pp. 4164-73, Dec 15 1994.

B. R. Genge, G. R. Sauer, L. N. Wu, F. M. McLean, and R. E. Wuthier. "Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle-mediated mineralization." J Biol Chem, vol. 263, pp. 18513-9, Dec 5 1988.

J. B. Lian and G. S. Stein. "Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation." The Iowa Orthopaedic Journal, vol. 15, pp. 118-140, 1995.

L. E. Monfoulet, P. Becquart, D. Marchat, K. Vandamme, M. Bourguignon, E. Pacard, et al. "The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs." Tissue Eng Part A, vol. 20, pp. 1827-40, Jul 2014.

K. Isaksson, D. Akerberg, M. Posaric-Bauden, R. Andersson, and B. Tingstedt. "In vivo toxicity and biodistribution of intraperitoneal and intravenous poly-L-lysine and poly-L-lysine/poly-L-glutamate in rats." J Mater Sci Mater Med, vol. 25, pp. 1293-9, May 2014.

K. Matsumura and S. H. Hyon. "Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties." Biomaterials, vol. 30, pp. 4842-9, Sep 2009.

J. E. Lovelock. "The haemolysis of human red blood-cells by freezing and thawing." Biochimica et Biophysica Acta, vol. 10, pp. 414-426, 1953.

L. Engebretsen, K. Steffen, J. Alsousou, E. Anitua, N. Bachl, R. Devilee, et al. "IOC consensus paper on the use of platelet-rich plasma in sports medicine." British Journal of Sports Medicine, vol. 44, pp. 1072-1081, December 1, 2010.

B. L. Eppley, J. E. Woodell, and J. Higgins. "Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing." Plast Reconstr Surg, vol. 114, pp. 1502-8, Nov 2004.

D. F. Nixon, J. P. Ting, and J. A. Frelinger. "Ia antigens on non-lymphoid tissues their origins and functions." Immunol Today, vol. 3, pp. 339-42, Dec 1982.

J. S. Pober and M. A. Gimbrone, Jr. "Expression of Ia-like antigens by human vascular endothelial cells is inducible in vitro: demonstration by monoclonal antibody binding and immunoprecipitation." Proc Natl Acad Sci U S A, vol. 79, pp. 6641-5, Nov 1982.

J. M. Ryan, F. P. Barry, J. M. Murphy, and B. P. Mahon. "Mesenchymal stem cells avoid allogeneic rejection." Journal of Inflammation (London, England), vol. 2, pp. 8-8, 2005.

S. E. Haynesworth, M. A. Baber, and A. I. Caplan. "Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies." Bone, vol. 13, pp. 69-80, 1992.

S. Beyth, Z. Borovsky, D. Mevorach, M. Liebergall, Z. Gazit, H. Aslan, et al. "Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness." Blood, vol. 105, pp. 2214-9, Mar 1 2005.

J. A. Potian, H. Aviv, N. M. Ponzio, J. S. Harrison, and P. Rameshwar. "Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens." J Immunol, vol. 171, pp. 3426-34, Oct 1 2003.

I. Rasmusson, O. Ringden, B. Sundberg, and K. Le Blanc. "Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms." Exp Cell Res, vol. 305, pp. 33-41, Apr 15 2005.

J. M. Ryan, F. P. Barry, J. M. Murphy, and B. P. Mahon. "Mesenchymal stem cells avoid allogeneic rejection." J Inflamm (Lond), vol. 2, p. 8, Jul 26 2005.

Q. Xue, X. Y. Luan, Y. Z. Gu, H. Y. Wu, G. B. Zhang, G. H. Yu, et al. "The negative co-signaling molecule b7-h4 is expressed by human bone marrow-derived mesenchymal stem cells and mediates its T-cell modulatory activity." Stem Cells Dev, vol. 19, pp. 27-38, Jan 2010.

J. M. Ryan, F. Barry, J. M. Murphy, and B. P. Mahon. "Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells." Clin Exp Immunol, vol. 149, pp. 353-63, Aug 2007.

Downloads

Published

2017-02-02

How to Cite

W Weston, W., Quevedo, M., Oglesby, S., Ganey, T., & Temple, H. T. (2017). Cells Isolated from Cadaveric Bone Marrow are Safe for Use in Bone Healing and Effective at Promoting Osteogenic Re-construction. International Journal of Sciences: Basic and Applied Research (IJSBAR), 31(2), 183–198. Retrieved from https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/6813

Issue

Section

Articles